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• Clustering for building locally linear models

• Reinforcement learning for continuous 
dynamic systems

• Neural networks, deep learning

• Genetic programming, symbolic 
regression

• Applications in robotics and motion control

Research interests
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Deep reinforcement learning
+ Excellent for state representation using high-dimensional input
- Many hyper-parameters to tune
- Unpredictable and difficult to reproduce
- High computational costs

Useful to investigate other representations!

Genetic programming and symbolic regression are tools that definitely 
deserve more attention.
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Genetic Programming, Symbolic Regression
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Symbolic Regression

f = -15.42978401 + 2.42980826 * ((x1 – (x1 *
-1.49416733 + x2 * 0.51196778 + 0.00000756)) + 
(sqrt(power((x1 – (x1 * -1.49416733 + x2 *
0.51196778 + 0.00000756)), 2) + 1) – 1) / 2) ...

-3.141592654   -30   -23.34719731
-2.932153143   -30   -22.67195916
-2.722713633   -30   -22.07798667
-2.513274123   -30   -21.63117778
-2.303834613   -30   -21.2992009
...                    ...     ...
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Symbolic Regression Algorithms

• Multiple Regression Genetic Programming [1]
• Evolutionary Feature Synthesis [2]
• Multi-Gene Genetic Programming [3]
• Single Node Genetic Programming [4, 5]

• [1] I. Arnaldo et al.: Multiple regression genetic programming (2014)
• [2] I. Arnaldo et al.: Building predictive models via feature synthesis (2015)
• [3] M. Hinchliffe et al.: Modelling chemical process systems using a multi-gene genetic programming 

algorithm (1996)
• [4] D. Jackson: Single node genetic programming on problems with side effects (2012)
• [5] J. Kubalík et al.: An improved Single Node Genetic Programming for symbolic regression (2015)
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Basic SNGP

J. Kubalík et al.: Hybrid single node genetic programming for symbolic regression (2016)
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Modifications and extensions
• SNGP and MGGP with affine transformation of input variables [1,2]
• MGGP: Backpropagation for model tuning and tracking dynamic data [2]
• SNGP with partitioned population [3]
• Multi-objective SNGP [4]

• [1] J. Kubalík et al.: Enhanced Symbolic Regression Through Local Variable Transformations (2017)
• [2] J. Žegklitz, P. Pošík: Symbolic Regression in Dynamic Scenarios with Gradually Changing Targets

(2019)
• [3] Alibekov et al.: Symbolic Method for Deriving Policy in Reinforcement Learning (2016). 
• [4] J. Kubalík et al.: Learning Accurate Robot Models via Combination of Prior Knowledge and Data

(submitted, 2019)
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Affine transformation of inputs: motivation
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Extended SNGP population

Standard SNGP:

Partitioned population and transformed inputs:
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Benefits of transformed inputs

Original SNGP:
f = 1.27297628 * sigmoid(x1 + x2 – 0.0625 * 
x1) – 0.38266172 * (power((0.0625 * x1), 3) –
(0.22340393 * ((x1 + x2) – (0.0625 * x1)))) –
2.7355E-4 *  ((power(x1, 2) * x2 – x1 – (30.25 
* (x1 + sigmoid(x2))))) + 0.35937439

Transformed input variables:

f = -2.6 + 0.1 * (36.0 + v1) – 2.0 * (0.5 –
sigmoid(v1)) – 9.0E-8 * (sigmoid(v2 – 81.0) 
* 0.00195313)

RMSE = 5.78E-2 RMSE = 6.31E-10

v1 = 0.5 * x1 + 0.5 * x2

v2 = 0.07105142 * x1 + 0.07105142 * x2
+ 4.24664016

𝑓 𝑥ଵ, 𝑥ଶ ൌ 0.1ሺ0.5𝑥ଵ ൅ 0.5𝑥ଶሻ ൅
2

1 ൅ 𝑒ିሺ଴.ହ௫భା଴.ହ௫మሻ
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Solving Bellman equation via 
genetic programming



14

Solve Bellman equation by using GP

Generate data:

Bellman equation in terms of the data:
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Direct solution of Bellman equation

Fitness function:

Use GP to find a symbolic representation of V



16

–

/

+

cos–

x1 x2

x1 x2

x3

Symbolic
regression

Target data
Symbolic V-function
from previous iteration

Symbolic value iteration (SVI)



Pendulum swing-up: symbolic value iteration
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V function for 1-DOF pendulum swing-up

89 parameters
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V-function for 1-DOF pendulum swing-up

89 parameters 961 parameters
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V-function for 1-DOF pendulum swing-up
Symbolic V-function

Less smooth trajectorySmooth swing-up trajectory

Baseline V-function
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Comparison with a neural network
Symbolic V-function Neural network V-function

89 parameters 201 parameters
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Swing-up experiment on the real system
Pendulum angle

Performance very close to theoretically optimal bang-bang control

Control action
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Conclusions on symbolic value functions
• Compact and typically very smooth V-functions. Analytic, can be plugged 

in other algorithms.

• Near optimal control performance, outperforms other approximators
(basis functions, DNN).

• High computational costs, comparable to NN.

• So far tested on systems with a small number of state variables.

Challenges:
Direct solution, high-dimensional state spaces, convergence guarantees, 
model-free variant.
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Genetic programming for 
building dynamic models
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Symbolic regression for modeling dynamic systems

Nonlinear autoregressive with exogenous input model (NARX)

Predicted output Past outputs Past inputs
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Challenges of model building for dynamic systems

• Use short data sequences

• Consistent models of multi-variable systems

• Include prior knowledge 

• Automatically select data for updating models

• Model accuracy – complexity tradeoff
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• Mechanistic model correctly represents the physics, but is inaccurate as 
a prediction model (actuator nonlinearities).

• Data-driven model constructed via symbolic regression is accurate, but 
does not necessarily respect the physical constraints.

Mechanistic model: 

Mobile robot experiments
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Motion planning with 
mechanistic model

Motion planning with 
data-driven model
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Solution: include prior knowledge
Generate synthetic data representing physical constraints, use MO GP

Examples:

• Equilibrium under zero input

• Non-holonomic constraint (robot cannot move sideways)
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Conclusions on symbolic model construction

• Accurate and compact models from small data sets

• Model structure can be constrained to a specific model class

Challenges:
Effective incorporation of prior knowledge, computational costs, 
multi-dimensional models.


